DeepLearning / / 2022. 11. 1. 15:39

DeepLearning - HyperParameter 튜닝

from keras.layers import BatchNormalization

import keras_tuner
from tensorflow import keras
def build_model(hp):
    ip = Input(shape=(X.shape[1],))
    n = BatchNormalization()(ip)
    n = Dense(hp.Choice('units', [8, 16, 32, 64, 128, 256]),
              activation='elu')(n)
    n = Dropout(0.5)(n)
    n = BatchNormalization()(n)
    n = Dense(hp.Choice('units', [8, 16, 32, 64, 128, 256]),
              activation='elu')(n)
    n = BatchNormalization()(n)
    n = Dense(hp.Choice('units', [8, 16, 32, 64, 128, 256]),
              activation='elu')(n)
    n = Dropout(0.5)(n)
    n = BatchNormalization()(n)
    n = Dense(hp.Choice('units', [8, 16, 32, 64, 128, 256]),
              activation='elu')(n)
    n = Dense(1, activation='sigmoid')(n)
    model = Model(inputs=ip, outputs=n)
    model.compile(loss='mse', optimizer='adam', metrics='accuracy')
    return model

tuner3 = keras_tuner.RandomSearch(
    build_model, objective='val_accuracy', max_trials=5, directory='./tuner4')


tuner3.search(X, y, epochs=1500, validation_split=0.1)
best_model3 = tuner3.get_best_models()[0]

best_model3.evaluate(X_test, y_test)
  • 네이버 블로그 공유
  • 네이버 밴드 공유
  • 페이스북 공유
  • 카카오스토리 공유